Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid.
نویسندگان
چکیده
To understand the machinery underlying a tomato cultivar harboring the Hero A gene against cyst nematode using microarrays, we first analyzed tomato gene expression in response to potato cyst nematode (PCN; Globodera rostochiensis) during the early incompatible and compatible interactions at 3 and 7 days post-inoculation (dpi). Transcript levels of the phenylalanine ammonia lyase (PAL) and Myb-related genes were up-regulated at 3 dpi in the incompatible interaction. Transcription of the genes encoding pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) was also up-regulated at 3 dpi in the incompatible interaction. On the other hand, the four genes (PAL, Myb, PDC and ADH) were down-regulated in the compatible interaction at 3 dpi. When the expression levels of several pathogenesis-related (PR) protein genes in tomato roots were compared between the incompatible and compatible interactions, the salicylic acid (SA)-dependent PR genes were found to be induced in the incompatible interaction at 3 dpi. The PR-1(P4) transcript increased to an exceptionally high level at 3 dpi in the cyst nematode-infected resistant plants compared with the uninoculated controls. The free SA levels were elevated to similar levels in both incompatible and compatible interactions. We then confirmed that PR-1(P4) was not significantly induced in the NahG tomato harboring the Hero A gene, compared with the resistant cultivar. We thus found that PR-1(P4) was a hallmark for the cultivar resistance conferred by Hero A against PCN and that nematode parasitism resulted in the inhibition of the SA signaling pathway in the susceptible cultivars.
منابع مشابه
Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway.
Responses of resistant (Mi-1/Mi-1) and susceptible (mi-1/ mi-1) tomato (Solanum lycopersicum) to root-knot nematodes (RKNs; Meloidogyne spp.) infection were monitored using cDNA microarrays, and the roles of salicylic acid (SA) and jasmonic acid (JA) defense signaling were evaluated in these interactions. Array analysis was used to compare transcript profiles in incompatible and compatible inte...
متن کاملOverexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was ide...
متن کاملTrap Crops and Population Management of Globodera tabacum tabacum.
Tobacco, eastern black nightshade, and tomato were grown for 3 to 13 weeks to assess differences in invasion, development, and soil density of Globodera tabacum tabacum (tobacco cyst nematode) in field plots and microplots over three seasons. Tobacco cyst nematodes invaded roots of resistant and susceptible tobacco, nightshade, and tomato. Nematode development was fastest in nightshade and slow...
متن کاملWater Balance, Hormone Homeostasis, and Sugar Signaling Are All Involved in Tomato Resistance to Tomato Yellow Leaf Curl Virus.
Vacuolar water movement is largely controlled by membrane channels called tonoplast-intrinsic aquaporins (TIP-AQPs). Some TIP-AQP genes, such as TIP2;2 and TIP1;1, are up-regulated upon exposure to biotic stress. Moreover, TIP1;1 transcript levels are higher in leaves of a tomato (Solanum lycopersicum) line resistant to Tomato yellow leaf curl virus (TYLCV) than in those of a susceptible line w...
متن کاملRalstonia solanacearum Extracellular Polysaccharide Is a Specific Elicitor of Defense Responses in Wilt-Resistant Tomato Plants
Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 51 9 شماره
صفحات -
تاریخ انتشار 2010